

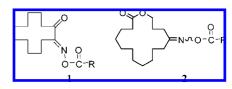
Synthesis and Herbicidal Activity of 12-(Aryloxyacyloxyimino)-1,15-pentadecanlactone Derivatives

Xiang-Qing Meng,[†] Jian-Jun Zhang,[†] Xiao-Mei Liang,[†] Wei-Juan Zhu,[†] Yan-Hong Dong,[†] Xue-Min Wu,[†] Jia-Xing Huang,[†] Chang-Hui Rui,[‡] Xian-Lin Fan,[‡] Fu-Heng Chen,[†] and Dao-Quan Wang^{*,†}

Key Laboratory of Pesticide Chemistry and Application Technology, Department of Applied Chemistry, China Agricultural University, Beijing, People's Republic of China 100094, and Key Laboratory of Pesticide Chemistry and Application Technology, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, People's Republic of China 100094

A series of novel 12-(aryloxyacyloxyimino)-1,15-pentadecanlactone derivatives (3) were synthesized, and their structures including configuration of C=N bond were confirmed by ¹H NMR, elemental analysis and X-ray diffraction analysis. The bioassay showed that some of them exhibited excellent herbicidal activity against *Amaranthus tricolor* L. The activity of compounds 3 except compounds **3A1**-2 was much higher than the commercial herbicide tribenuron-methyl. The further bioassay showed that the representative of compounds 3, **3A1**-12, exhibited excellent herbicidal activity not only against dicotyledon, such as *Amaranthus tricolor* L., *Cucumis sativus* L., *Glycine max* L., and *Phaseolus radiatus* L., but also against monocotyledon, such as *Zea mays* L. and *Oryza sativa* L.

KEYWORDS: Macrolactone; synthesis; herbicidal activity; herbicide


1. INTRODUCTION

Mimicking the chemistry of biologically active natural products is an important approach for developing new pesticides with high efficacy and selectivity against target species. Naturally occurring macrolactams and macrolactones have a broad spectrum of biological activity. Some of them exhibited anthelmintic and insecticidal activity such as avermeetins (1), fungicidal activity such as discodermide (2), maltophilin (3), and xanthobaccin A (4) and some others exhibited good herbicidal activity such as pyrenophorol, a macrodiolide compound, isolated from a Drechslera avenae pathotype, which was phytotoxic to Avena sterilis at a concentration of 320 μ M (5). The discovery of fungicidal lead compounds with new chemotypes by mimicking the structure of naturally occurring macrolactams was succeeded in our laboratory and the bioassay showed that 12-alkoxyiminopentadecanlactam derivatives exhibited not only good fungicidal activity but also a broad spectrum of fungicidal activity (6). On the other hand, in our searching for potential pesticides, 2-acyloxyiminocyclododecanones (1) with some herbicidal activity was found (7). Thus, their pentadecanlactone analogous (2) (Figure 1) were synthesized and the bioassay showed that several compounds with

aryloxy(iso-butyryloxy)imino side chain exhibited relatively better herbicidal activity (8), which stimulated our interest in the modification of phenoxyalkanoic acids used as herbicides.

The development of phenoxyalkanoic acid herbicides dates from 1940s. 2,4-D (2,4-dichlorophenoxy acetic acid) (**a**) is the successful representative, which is a readily systemic herbicide (9). Although 2,4-D constituted a real hazard for human and animal health as numerous accidents of poisoning deaths caused by this herbicide have been reported (10), it meets safety standards for all countries in which it is registered (11). Therefore, so far, it is still applied to weed control in the world. Since it was discovered, much research has been carried out on its molecules and many modified derivatives with improved herbicidal activity and broader herbicidal spectrum have been commercialized. Some examples are as follows: MCPA (**b**), 2,4-DB (**c**), 2,4-D butylate (**d**), diclofop-methyl (**e**), phenothiol (**f**), MCPCA (**g**), fluazifop-butyl (**h**), haloxyfop (**i**), fenoxaprop (**j**), fenoxaprop-P (**k**), and quizalofop-P (**l**) (**Figure 2**).

It can be seen from the examples mentioned above that structural modification of 2,4-D mainly focus on the modifica-

10.1021/jf802649w CCC: \$40.75 © 2009 American Chemical Society Published on Web 12/31/2008

^{*} Corresponding author (telephone/fax 86-10-62732219; e-mail wangdq@cau.edu.cn).

[†] China Agricultural University.

[‡] Chinese Academy of Agricultural Science.

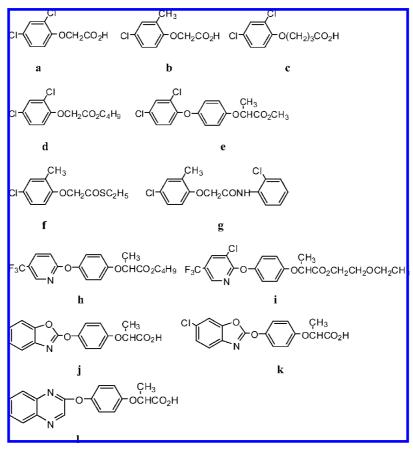
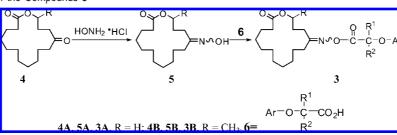



Figure 2. Commercial herbicides a–I.

tion of Ar and the formation of simple esters. In this paper, we decided to introduce aryloxyalkanoic acids as active groups into molecule **2** to improve their herbicidal activity. Namely, 1.15-pentadecanlactone ring is combined with phenoxyalkanoic acids and imino group as a link bridge. Thus a series of 12-(aryloxyacyloxyimino)-1,15-pentadecanloctone derivatives (**3**) were synthesized and their herbicidal activity was evaluated. The synthetic route of compounds **3** is shown in **Scheme 1**.

2. MATERIALS AND METHODS

2.1. General. ¹H NMR spectra were recorded in CD₃COCD₃ with a Bruker DPX300 spectrometer, using TMS as internal standard; elemental analysis was performed by the analytical center in Institute of Chemistry (Beijing), Chinese Academy of Science; Melting points

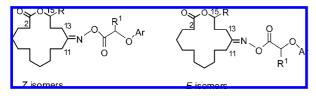


Figure 3. Z and E isomers of compounds 3.

were measured on a Yanagimoto melting-point apparatus and are uncorrected. The solvents and reagents were used as received or were dried prior to use as needed.

2.2. Chemical Synthesis. 2.2.1. Synthesis of Compounds 4. Compound 4A was synthesized from 2-nitrocyclododecanone according to the method given in ref 8b. Compound 4B was synthesized in the same method for the synthesis of 4A just using methyl vinyl ketone instead of acrolein. 4A: Yield 91%; mp 29–31 ((8)b: 28.5–30). 4B: Yield 92%; mp 28~29 °C; ¹H NMR δ 1.20(d, 3H, J = 6.3 Hz, CH₃), 1.25~1.48(m, 12H), 1.54~1.92(m, 6H), 2.27~2.43(m, 4H), 2.52~2.61(m, 2H), 4.87~4.98(m, 1H, C15–H).

2.2.2. Synthesis of Compounds 5. Compounds 5A and 5B were synthesized from 4A and 4B, respectively, according to the method given in ref 8b. Compound 5A (a mixture of Z and E isomers): Yield 93%; mp 57–62 (8b: 57–62 °C). 5B (a mixture of Z- and E-isomers): Yield 90%; mp 72~78. ¹H NMR $\delta\delta$ 1.20(d, 3H, J = 1.9 Hz, CH₃)), 1.25~1.45(m, 12H), 1.54~1.79(m, 6H), 2.17~2.44(m, 6H), 4.88~4.98(m, 1H, C15–H), 9.41, 9.44 (1H, HO-N =).

2.2.3. Preparation of Compounds 6. Compound 6 was prepared from phenols and chloroacetic acid or α -chloro propionic acid according to the methods given in ref 12 (for preparation of aryloxyacetic acids) and ref 13 (for preparation of α -aryloxypropionic acids).

 Table 1. Experimental Data of Compounds 3

compound no.	R¹	R ²	configuration	Ar	eluant for column chromatography ^a	R _f value	mp	yield %
3A1-1(1) 3A1-1(2)	Н	Н	Z E	C ₆ H ₄	a	0.62 0.50	24~25 35~35	90
3A1-2(1) 3A1-2(2)	Н	Н	Z E	2-MeC ₆ H ₄	a	0.60 0.53	39~40 40~41	86
3A1-3(1) 3A1-3(2)	Н	Н	Z E	4-MeC ₆ H ₄	a	0.71 0.64	/ 44~45	91
3A1-4(1) 3A1-4(2)	Н	Н	Z E	$4-\text{MeOC}_6\text{H}_4$	a	0.71 0.60	/ 49~50	87
3A1-5(1) 3A1-5(2)	Н	Н	Z E	2-CIC ₆ H ₄	a	0.57 0.48	80~81 66~67	83
3A1-6(1) 3A1-6(2)	Н	Н	Z E	3-CIC ₆ H ₄	a	0.65 0.50	61~62 79~80	81
3A1—7(1) 3A1—7(2)	Н	Н	Z E	4-CIC ₆ H ₄	a	0.70 0.55	68~70 70~71	93
3A1-8(1) 3A1-8(2)	Н	Н	Z E	$3-O_2NC_6H_4$	f	0.58 0.50	64~65 66~67	85
3A1-9(1) 3A1-9(2)	Н	Н	Z E	2,3-Me ₂ C ₆ H ₃	а	0.67 0.58	50~51 52~53	90
3A1-10(1) 3A1-10(2)	Н	Н	Z E	3,4-Me ₂ C ₆ H ₃	а	0.70 0.67	/ 47~48	85
3A1-11(1) 3A1-11(2)	Н	Н	Z E	4-CI-2-MeC ₆ H ₃	b	0.62 0.55	43~44 57~58	91
3A1-12(1) 3A1-12(2)	Н	Н	Z E	$2,4\text{-}Cl_2C_6H_3$	а	0.48 0.36	 	85
3A1—13(1) 3A1—13(2)	Н	Н	Z E	4-Br-2-CIC ₆ H ₃	а	0.63 0.45	77~78 67~68	89
3A2—1(1) 3A2—1(2)	Me	Н	Z E	C_6H_4	d	0.74 0.73	37~38 40~41	90
3A2-2(1) 3A2-2(2)	Me	Н	Z E	4-MeC ₆ H ₄	g	0.73 0.62	51~52 50~51	89
3A2-3(1) 3A2-3(2)	Me	Н	Z E	2-CIC ₆ H ₄	а	0.67 0.58	33~34 39~40	85
3A2-4(1) 3A2-4(2)	Me	Н	Z E	3-CIC ₆ H ₄	а	0.69 0.52	58~59 44~45	80
3A2-5(1) 3A2-5(2)	Me	Н	Z E	4-CIC ₆ H ₄	а	0.71 0.65	67~68 60~61	92
3A2-6(1) 3A2-6(2)	Me	Н	Z E	2,3-Me ₂ C ₆ H ₃	g	0.71 0.62	59~60 40~41	79
3A2—7(1) 3A2—7(2)	Me	Н	Z E	4-CI-3-MeC ₆ H ₃	g	0.69 0.62	75~76 88~89	86
3A2-8(1) 3A2-8(2)	Me	Н	Z E	2,4-Cl ₂ C ₆ H ₃	а	0.74 0.72	48~49 76~77	94
3B—1(1) 3B—1(2)	Н	Н	Z E	4-CIC ₆ H ₄	a	0.63 0.56	60~61 36~37	90
3B-2(1) 3B-2(2)	Н	Н	Z E	4-CI-2-MeC ₆ H ₃	е	0.70 0.66	/ 57~58	89
3B-3(1) 3B-3(2)	Н	Н	Z E	4-CI-3-MeC ₆ H ₃	C	0.73 0.61	60~61	76
3B-4(1) 3B-4(2)	Н	Н	Z E	2,4-Cl ₂ C ₆ H ₃	a	0.65 0.56	_67~68 /	85
3B-5(1) 3B-5(2)	Н	Н	Z E	4-Br-2-CIC ₆ H ₃	C	0.68 0.59	/ 48~49	79
3B-6(1) 3B-6(2)	Me	Н	Z E	4-CIC ₆ H ₄	d	0.73 0.63	/ 72~73	91
. /								

^a Petroleum ether:dichloromethane:ethyl acetate = 30:20:2 (v/v) for a; 30:20:3 (v/v) for b; 30:20:1 (v/v) for c; 30:15:2 (v/v) for d; 30:15:1 (v/v) for e; 30:10:4 (v/v) for f; and 30:10:2 (v/v) for g.

Table 2. Elemental Data of Compounds 3

	C	%	н	%	N	%
compound no.	calcd	found	calcd	found	calcd	found
3A1-1(1)	68.46	68.40	8.24	8.43	3.47	3.44
3A1-1(2)	68.46	68.36	8.24	8.22	3.47	3.36
3A1-2(1)	69.04	69.14	8.45	8.54	3.35	3.34
3A1-2(2)	69.04	68.99	8.45	8.43	3.35	3.38
3A1-3(1)	69.04	69.06	8.45	8.47	3.35	3.35
3A1-3(2)	69.04	69.36	8.45	8.49	3.35	3.41
	66.49		8.14	8.14	3.23	3.22
3A1-4(1)		66.02				
3A1-4(2)	66.49	66.56	8.14	8.17	3.23	3.27
3A1-5(1)	63.08	63.06	7.36	7.34	3.20	3.05
3A1-5(2)	63.08	63.48	7.36	7.42	3.20	2.84
3A1-6(1)	63.08	63.08	7.36	7.33	3.20	3.15
3A1-6(2)	63.08	63.04	7.36	7.36	3.20	3.28
3A1-7(1)	63.08	63.05	7.36	7.37	3.20	3.07
3A1-7(2)	63.08	63.55	7.36	7.52	3.20	3.41
3A1-8(1)	61.59	61.16	7.19	7.16	6.25	6.12
3A1-8(2)	61.59	61.67	7.19	7.14	6.25	6.31
3A1-9(1)	69.58	69.41	8.64	8.90	3.25	3.24
3A1-9(2)	69.58	69.25	8.64	8.64	3.25	3.25
3A1-10(1)	69.58	69.42	8.64	8.61	3.25	3.10
3A1-10(1)	69.58	69.48	8.64	8.62	3.25	3.27
3A1-11(1)	63.78	63.77	7.58	7.56	3.10	3.10
3A1-11(2)	63.78	63.81	7.58	7.60	3.10	3.06
3A1-12(1)	58.48	58.44	6.61	6.60	2.97	2.85
3A1-12(2)	58.48	58.65	6.61	6.57	2.97	2.75
3A1-13(1)	53.45	53.41	6.05	6.10	2.71	2.62
3A1-13(2)	53.45	53.44	6.05	6.06	2.71	2.61
3A2-1(1)	69.04	68.95	8.45	8.45	3.35	3.35
3A2-1(2)	69.04	69.11	8.45	8.43	3.35	3.37
3A2-2(1)	69.58	69.51	8.64	8.59	3.25	2.99
3A2-2(2)	69.58	69.50	8.64	8.64	3.25	3.35
3A2-3(1)	63.78	63.81	7.58	7.83	3.10	3.08
3A2-3(2)	63.78	63.88	7.58	7.58	3.10	3.10
3A2-4(1)	63.78	63.35	7.58	7.56	3.10	3.13
3A2-4(2)	63.78	63.36	7.58	7.52	3.10	3.03
3A2-5(1)	63.78	63.45	7.58	7.52	3.10	2.91
3A2 - 5(2)	63.78		7.58	7.58		
		63.75			3.10	3.10
3A2-6(1)	70.08	70.20	8.82	8.86	3.14	3.14
3A2-6(2)	70.08	69.99	8.82	8.79	3.14	3.12
3A2-7(1)	64.43	64.61	7.79	7.79	3.01	3.01
3A2-7(2)	64.43	64.38	7.79	7.78	3.01	2.92
3A2-8(1)	59.26	59.29	6.84	6.84	2.88	2.82
3A2-8(2)	59.26	59.28	6.84	6.84	2.88	2.88
3B-1(1)	63.78	63.59	7.58	7.55	3.10	3.01
3B-1(2)	63.78	63.88	7.58	7.57	3.10	3.03
3B-2(1)	64.43	64.54	7.79	7.90	3.01	3.08
3B-2(2)	64.43	64.00	7.79	7.80	3.01	3.09
3B-3(1)	64.43	64.97	7.79	7.93	3.01	2.79
3B-3(2)	64.43	64.55	7.79	7.80	3.01	2.93
3B-4(1)	59.26	59.45	6.64	6.93	2.88	3.12
3B-4(2)	59.26	59.63	6.64	6.88	2.88	2.90
3B-4(2) 3B-5(1)	54.30	54.56	6.27	6.46	2.64	2.90
3B-5(2)	54.30	54.27	6.27	6.28	2.64	2.64
3B-6(1)	64.43	64.29	7.79	7.76	3.01	2.85
3B-6(2)	64.43	64.31	7.79	7.78	3.01	2.97

2.2.4. General Procedure for Synthesis of Compounds 3. To a solution of 5(4 mmol) and 6(5 mmol) in CH₂Cl₂ (30 mL) was added DCC (dicyclohexylcarbodiimide, 1.03 g, 5 mmol). The mixture was stirred at room temperature for 12 h. After filtration, the filtrate was washed with saturated NaHCO₃ solution, water and brine, dried over Na₂SO₄, and evaporated under reduced pressure to give a crude product. Further purification on silica gel chromatography gave three portions in the order of (a) *Z* isomer (1), (b) mixture and (c) *E* isomer (2) (Figure 3). The experimental data of the target compounds are summarized in Table 1, in which only the total yields of the *Z* and *E* isomers are given. Elemental data are given in Table 2. ¹H NMR data are listed in Table 3.

2.3. X-ray Diffraction Analysis of 3A1-7(1). The crystal of compounds 3A1-7(1) was obtained by slow evaporation from a solution of *n*-hexane and ethyl ether (10:1). All measurements were made with a Siemens CCD area detector under graphite monochro-

matized Mo K α ($\lambda = 0.071073$ nm) radiation at 293 K. The structure was solved by direct method using SHELX (14), and refined on F^2 using all data by full-matrix least-squares procedures with SHELXL-97 (15). The crystal structure is shown in **Figure 4**.

2.4. Herbicidal Activity. Compounds **3** (*Z* isomer, *E* isomer or a mixture of *Z* and *E* isomers) were formulated as 10 g/L emulsible concentrates (EC) using xylene as solvent and Nongru 0204 (25 g/L) and Nongru 2201 (25 g/L) as the emulsifying agents. Commercial herbicides 2,4-D and tribenuron-methyl were used as the standards of comparison for the activity of the compounds **3**. The blank test was made using xylene containing emulsifying agents Nongru 0204 (25 g/L) and Nongru 2201 (25 g/L). Each EC was diluted with water to give emulsions of five different concentrations (6.25, 12.5, 25, 50, 100 mg/L). The plastic cups (40 mm in diameter) were filled with soil and kept wet by watering. We placed 50–60 seeds of *Amaranthus tricolor* L. in the emergence state in the soil, covered them with fine soil, and

Table 3. ¹H NMR Data of Compounds 3

ompound no.	¹ Η NMR, δ
3A1-1(1)	$1.36 \sim 1.40$ (m, 12H), $1.54 \sim 1.67$ (m, 4H), $1.75 \sim 1.84$ (m, 2H), $2.30 \sim 2.35$ (m, 4H), $2.41 \sim 2.47$ (m, 2H), 4.04 (t, 2H, $J = 5.8$ Hz), 4.93 (s, 2H), $2.20 \sim 7.05$ (m, 2H)
3A1-1(2)	6.96~7.00(m, 3H), 7.28~7.35(m, 2H) 1.27~1.34(m, 12H), 1.34~1.56(m, 2H), 1.62~1.67(m, 2H), 1.90~1.99(m, 2H), 2.30~2.41(m, 4H), 2.45~2.50(m, 2H), 4.16~4.20(m, 2H), 4.94(s, 2H), 2H), 4.94(s
3A1-2(1)	2H), 6.95~7.00(m, 3H), 7.28~7.33(m, 2H) 1.36~1.44(m, 12H), 1.56~1.67(m, 4H), 1.75~1.83(m, 2H), 2.26(s, 3H), 2.30~2.35(m, 4H), 2.41~2.46(m, 2H), 4.03(t, 2H, <i>J</i> = 5.8 Hz), 4.95(s,
3A1-2(2)	2H), 6.85~6.90(m, 2H), 7.12~7.19(m, 2H) 1.26~1.33(m, 12H), 1.45~1.55(m, 2H), 1.60~1.69(m, 2H), 1.90~1.99(m, 2H), 2.25(s, 3H), 2.30~2.40(m, 4H), 2.45~2.50(m, 2H), 4.16~4.20(m
3A1-3(1)	2H), 4.96(s, 2H), 6.85~6.89(m, 2H), 7.11~7.18(m, 2H) 1.36~1.40(m, 12H), 1.54~1.67(m, 4H), 1.74~1.83(m, 2H), 2.26(s, 3H), 2.30~2.35(m, 4H), 2.40~2.46(m, 2H), 4.03(t, 2H, J = 5.8 Hz), 4.88(s,
3A1-3(2)	2H), 6.86(dd, 2H, <i>J</i> = 6.6 Hz, <i>J</i> = 2.1 Hz), 7.11(dd, 2H, <i>J</i> = 8.8 Hz, <i>J</i> = 0.7 Hz) 1.26~1.33(m, 12H), 1.45~1.55(m, 2H), 1.60~1.69(m, 2H), 1.90~1.96(m, 2H), 2.25(s, 3H), 2.30~2.40(m, 4H), 2.44~2.50(m, 2H), 4.16~4.20(m, 2H), 2.45~1.55(m, 2H), 2.55(m, 2H), 2.
3A1-4(1)	2H), 4.89(s, 2H), 6.83–6.88(m, 2H), 7.08~7.12(m, 2H) 1.36~1.39(m, 12H), 1.56~1.67(m, 4H), 1.78~1.83(m, 2H), 2.30~2.35(m, 4H), 2.41~2.48(m, 2H), 3.74(s, 3H), 4.05(t, 2H, J = 5.8 Hz), 4.86(s,
3A1-4(2)	2H), 6.85~6.94(m, 4H) 1.29~1.34(m,12H), 1.49~1.54(t, 2H), 1.62~1.67(m, 2H), 1.92~1.96(m, 2H), 2.30~2.41(m, 4H), 2.45~2.50(m, 2H), 3.74(s, 3H),4.18(t,2H, J = 5)
BA1-5(1)	Hz),4.86(s, 2H), 6.84~6.93(m, 4H) 1.30~1.45(m, 12H), 1.54~1.67(m, 4H), 1.77~1.86(m, 2H), 2.30~2.36(m, 4H), 2.43~2.49(m, 2H), 4.06(t, 2H, J = 5.8 Hz), 5.06(s, 1H),
BA1-5(2)	6.97~7.03(m, 1H), 7.09-7.12(m,1H), 7.27-7.33(m, 1H), 7.42-7.45(m, 1H) 1.25~1.35(m, 12H), 1.48~1.53(m, 2H), 1.62~1.67(m, 2H), 1.90~1.99 (m, 2H), 2.30~2.41(m, 4H), 2.45~2.50(m, 2H), 4.16~4.20(m, 2H), 5.07(s)
3A1-6(1)	2H), 6.97~7.02(m, 1H), 7.08~7.12(m, 1H), 7.26~7.31(m, 1H), 7.41~7.44(m, 1H) 1.36~1.44(m, 12H), 1.57~1.67(m, 4H), 1.80~1.86(m, 2H), 2.30~2.36(m, 4H), 2.44~2.50(m, 2H), 4.08(t, 2H, J = 5.8 Hz), 5.00(s, 2H),
3A1-6(2)	6.94~7.05(m, 3H), 7.30~7.36(m, 1H) 1.28~1.34(m, 12H), 1.50~1.54(m, 2H), 1.63~1.67(m, 2H), 1.92~1.99(m, 2H), 2.31~2.82(m, 6H), 4.18(t, 2H, J = 5.6 Hz), 5.02(s, 2H),
3A1-7(1)	$6.94 \sim 7.56(m, 3H), 7.30 \sim 7.36(m, 1H)$ $1.35 \sim 1.50(m, 1H), 1.54 \sim 1.67(m, 4H), 1.18 \sim 1.87(m, 2H), 2.30 \sim 2.36(m, 4H), 2.44 \sim 2.49(m, 2H), 4.07(t, 2H, J = 5.8 Hz), 4.97(s, 2H), 4.97(s$
BA1-7(2)	$6.98 \sim 7.04(m, 2H), 7.30 \sim 7.36(m, 2H)$ $1.25 \sim 1.35(m, 2H), 1.48 \sim 1.53(m, 2H), 1.64 \sim 1.67(m, 2H), 1.90 \sim 1.99(m, 2H), 2.30 \sim 2.41(m, 4H), 2.45 \sim 2.50(m, 2H), 4.18(t, H, J = 5.6 Hz), 1.25 \sim 1.35(m, 2H), 1.48 \sim 1.53(m, 2H), 1.64 \sim 1.67(m, 2H), 1.90 \sim 1.99(m, 2H), 2.30 \sim 2.41(m, 4H), 2.45 \sim 2.50(m, 2H), 4.18(t, H, J = 5.6 Hz), 1.25 \sim 1.35(m, 2H), 1.48 \sim 1.53(m, 2H), 1.64 \sim 1.67(m, 2H), 1.90 \sim 1.99(m, 2H), 2.30 \sim 2.41(m, 4H), 2.45 \sim 2.50(m, 2H), 4.18(t, H, J = 5.6 Hz), 1.25 \sim 1.35(m, 2H), 1.48 \sim 1.53(m, 2H), 1.64 \sim 1.67(m, 2H), 1.90 \sim 1.99(m, 2H), 2.30 \sim 2.41(m, 4H), 2.45 \sim 2.50(m, 2H), 4.18(t, H, J = 5.6 Hz), 1.25 \sim 1.35(m, 2H), 1.48 \sim 1.53(m, 2H), 1.64 \sim 1.67(m, 2H), 1.90 \sim 1.99(m, 2H), 2.30 \sim 2.41(m, 4H), 2.45 \sim 2.50(m, 2H), 4.18(t, H, J = 5.6 Hz), 1.25 \sim 1.35(m, 2H), 1.48 \sim 1.53(m, 2H), 1.64 \sim 1.67(m, 2H), 1.90 \sim 1.99(m, 2H), 2.30 \sim 2.41(m, 4H), 2.45 \sim 2.50(m, 2H), 4.18(t, H, J = 5.6 Hz), 1.25 \sim 1.35(m, 2H), 1.48 \sim 1.53(m, 2H), 1.64 \sim 1.67(m, 2H), 1.90 \sim 1.99(m, 2H), 2.30 \sim 2.41(m, 4H), 2.45 \sim 2.50(m, 2H), 1.48 \sim 1.53(m, 2H), 1.50 \sim 1.90(m, 2H), 1.90 \sim 1.90(m, 2H), 1.90$
	4.98(s, 2H), 6.99~7.03(m, 2H), 7.29~7.34(m, 2H)
BA1-8(1)	$1.36 \sim 1.41$ (m, 12H), $1.57 \sim 1.67$ (m, 4H), $1.83 \sim 1.87$ (m, 2 H), $2.30 \sim 2.37$ (m, 4H), $2.47 \sim 2.52$ (m, 2H), 4.09 (t, 2H, $J = 5.8$ Hz), 5.16 (s, 2H), $7.45 \sim 7.49$ (m, 1H), $7.60 \sim 7.65$ (m, 1H), $7.79 - 7.81$ (m, 1H), $7.87 \sim 7.91$ (m, 1H)
8A1-8(2)	1.30-1.34(m, 12H), 1.50-1.55(m, 2H), 1.62~1.67(m, 2H), 1.92~1.97(m, 2H), 2.30~2.35(m, 2H), 2.39~2.51(m, 4H), 4.18(t, 2H, <i>J</i> = 5.6 Hz), 5.19(s, 2H), 7.44~7.48(m, 1H), 7.62-7.65(m, 1H), 7.79-7.81(m, 1H), 7.87~7.91(m, 1H)
8A1-9(1)	1.36~1.44(m, 12H), 1.53~1.66(m, 4H), 1.72~1.79(m, 2H), 2.19(s, 3H), 2.26(s, 3H), 2.30~2.35(m, 4H), 2.39~2.45(m, 2H), 4.01(t, 2H, J = 5.7 Hz), 4.92(s, 2H), 6.72~6.81(m, 2H), 7.00-7.05(m, 1H)
BA1-9(2)	1.26~1.33(m, 12H), 1.47~1.52(m, 2H), 1.62~1.67(m, 2H), 1.91~1.98(m, 2H), 2.18(s, 3H), 2.25(s, 3H), 2.30~2.40(m, 4H), 2.44~2.49(m, 2H), 4.16~4.20(m, 2H), 4.92(s, 2H), 6.72~6.80(m, 2H), 7.00-7.05(m, 1H)
BA1-10(1)	1.26~1.40(m, 12H), 1.59~1.65(m, 4H), 1.78~1.88(m, 2H), 2.17(s, 3H), 2.22(s, 3H), 2.28~2.34(m, 4H), 2.38~2.44(m, 2H), 4.00(t, 2H, J = 5.8 Hz), 4.86(s, 2H), 6.66-6.0(m, 1H), 6.77-6.79(m, 1H), 7.02-7.05(m, 1H)
3A1-10(2)	1.25~1.33(m, 12H), 1.45~1.54(m, 2H), 1.62~1.67(m, 2H), 1.89~1.98(m, 2H), 2.16(s, 3H), 2.21(s, 3H), 2.30~2.40 (m, 4H), 2.44~2.49(m, 2H), 4.18(t, 2H, J = 5.6 Hz), 4.87(s, 2H), 6.66~6.69(m, 1H), 6.77~6.78(m, 1H), 7.02~7.04(m, 1H)
BA1-11(1)	1.36~1.44(m, 12H), 1.55~1.67(m, 4H), 1.77~1.87(m, 2H), 2.26 (s, 3H), 2.30~2.36(m, 4H), 2.44~2.49(m, 2H), 4.07(t, 2H, <i>J</i> = 5.8 Hz), 4.99(s, 2H), 6.92(d, 1H, <i>J</i> = 8.7 Hz), 7.15~7.22 (m, 2H)
BA1-11(2)	1.26~1.33(m, 12H), 1.47~1.52(m, 2H), 1.62~1.66(m, 2H), 1.91~1.98(m, 2H), 2.25(s, 3H), 2.30~2.40(m, 4H), 2.45~2.50(m, 2H), 4.18(t, 2H, J 5.6 Hz), 4.99(s, 2H), 6.91(d, 1H, J = 8.7 Hz), 7.13-7.21(m, 2H)
BA1-12(1)	1.25-1.44(m, 14H), 1.57-1.97(m, 6H), 2.28-2.47(m, 4H), 4.07(t, 2H, J=5.6 Hz), 4.87(s, 2H), 6.80-6.87(m, 1H), 7.15-7.21(m, 1H),
3A1-12(2)	7.37-7.42(m, 1H) 1.27-1.44(m, 14H), 1.63-1.97(m, 6H), 2.31-2.37(m, 2H), 2.42-2.47(m, 2H), 4.18(t, 2H, <i>J</i> =5.6 Hz), 4.87(s, 2H), 6.81-6.85(m, 1H),
3A1-13(1)	7.16-7.20(m, 1H), 7.37-7.40(m, 1H) 1.36~1.44(m,12H), 1.57~1.67(m, 4H), 1.81~1.88(m, 2H), 2.31~2.36(m, 4H), 2.45~2.51(m, 2H), 4.09(t, 2H, <i>J</i> = 5.8 Hz), 5.10(s, 2H), 7.10(d, 1
3A1-13(2)	<i>J</i> = 8.9 Hz), 7.47(dd, 1H, <i>J</i> =8.9 Hz, <i>J</i> = 2.4 Hz), 7.62(d, 1H, <i>J</i> = 2.4 Hz) 1.27~1.34(m, 12H), 1.45~1.55(m, 2H), 1.62~1.67(m, 2H), 1.90~1.99(m, 2H), 2.30~2.41(m, 4H), 2.45~2.50(m, 2H), 4.18(t, 2H, <i>J</i> = 5.6 Hz),
3A2-1(1)	5.11(s, 2H), 7.10(d, 1H, <i>J</i> = 8.9 Hz), 7.45(dd, 1H, <i>J</i> = 8.9 Hz, <i>J</i> = 2.4 Hz), 7.61(d, 1H, <i>J</i> = 2.4 Hz) 1.35(s, 12H),1.51~1.77(m, 9H),2.28~2.39(m, 6H), 3.99(t, 2H, <i>J</i> = 5.6 Hz), 5.06(q, 1H, <i>J</i> = 6.7 Hz), 6.94~7.00(m, 3H, 7.27~7.33(m, 2H))
3A2—1(2)	1.22~1.46(m, 14H), 1.62~1.66(m, 5H), 1.89~1.94 (m, 2H), 2.28~2.35(m, 4H), 2.42~2.47(m, 2H), 4.16(t, 2H, J = 5.6 Hz), 5.06(q, 1H, J = 6.4 Hz), 6.92~6.99(m, 3H), 7.27~7.32(m, 2H)
3A2—2(1)	1.26-1.90(m, 12H), 1.53~1.76(m, 9H), 2.25~2.38(m, 9H), 3.98 (t, 2H, J = 5.7 Hz), 5.00(q, 1H, J = 6.7 Hz), 6.83~6.85(m, 2H), 7.09~7.12(m 2H)
3A2-2(2)	1.21 ['] ~1.46(m, 14H), 1.60~1.66(m, 5H), 1.89~1.94(m, 2H), 2.24~2.35(m, 7H), 2.42~2.47(m, 2H), 4.14~4.18(m, 2H), 4.99(q, 1H, <i>J</i> = 6.7 Hz), 6.80~6.84(m, 2H), 7.06~7.11(m, 2H)
BA2—3(1)	$1.35 \sim 1.39(m, 12H), 1.53 \sim 1.80(m, 9H), 2.28 \sim 2.44(m, 6H), 3.99 \sim 4.03(m, 2H), 5.17(q, 1H, J = 6.7 Hz), 6.97 \sim 7.08(m, 2H), 7.26 \sim 7.32(m, 1H), 7.43 \sim 7.46(m, 1H)$
3A2—3(2)	1.22~1.47(m, 14H), 1.61~1.71(m, 5H), 1.87~1.95(m, 2H), 2.25~2.38(m, 4H), 2.44~2.47(m, 2H), 4.16(t, 2H, J = 5.6 Hz), 5.17(q, 1H, J = 6.8 Hz), 5.17(q, 2H), 5.17(q, 2H), 5.17(q, 2H)), 5.17(q, 2H), 5.17(q, 2H)), 5.17(q, 2H), 5.17(q, 2H)),
BA2-4(1)	Hz), $6.96 \sim 7.07$ (m, 2H), $7.25 \sim 7.30$ (m, 1H), $7.41 \sim 7.45$ (m, 1H) $1.35 \sim 1.39$ (m, 12H), $1.54 \sim 1.81$ (m, 9H), $2.29 \sim 2.44$ (m, 6H), 4.03 (t, 3H, $J = 5.6$ Hz), 5.16 (q, 1H, $J = 6.7$ Hz), $6.91 \sim 6.95$ (m, 1H), $7.01 \sim 7.04$ (m, 2H), $7.20 \sim 7.26$ (m, 1H)
3A2-4(2)	2H), 7.30 \sim 7.36(m, 1H) 1.23 \sim 1.32(m, 12H), 1.40 \sim 1.49(m, 2H), 1.55 $-$ 1.72(m, 5H), 1.87 \sim 1.96(m, 2H), 2.27 \sim 2.39(m, 4H), 2.43 \sim 2.48 (m, 2H), 4.16(t, 2H, $J = 5.6$ Hz), 5.15(-1.10),
3A2-5(1)	5.15(t, 1H, $J = 6.8$ Hz), 6.90~6.94(m, 1H), 6.99~7.03(m, 2H), 7.29~7.34(m, 1H) 1.35~1.39(m, 12H), 1.54~1.80(m, 9H), 2.29~2.43(m, 6H), 4.03(t, 2H, $J = 5.7$ Hz), 5.09(q, 1H, $J = 6.8$ Hz), 6.96~7.01(m, 2H), 7.30~7.35(m, 2H), 7.
3A2—5(2)	2H) 1.21 \sim 1.47(m, 14H), 1.60-1.65(m, 5H), 1.86-1.96(m, 2H), 2.23 \sim 2.48(m, 6H), 4.16(t, 2H, $J = 5.6$ Hz), 5.09(q, 1H, $J = 6.7$ Hz), 6.95 \sim 7.00 (m, 5H)
3A2—6(1)	2H), 7.29~7.34(m, 2H) 1.34~1.38(m, 12H), 1.50~1.72(m, 9H), 2.18(s, 3H), 2.23~2.36(m, 9H), 3.91~3.96(m, 2H), 4.97~5.04(m, 1H), 6.70(d, 1H, <i>J</i> = 8.2 Hz), 6.79(d,
. ,	1H, $J = 7.6$ Hz), 6.98–7.03(m, 1H)

Table 3. Continued

compound no.	1 H NMR, δ
3A2-6(2)	1.19~1.47(m, 14H), 1.61~1.67(m, 5H),1.86~1.95(m, 2H), 2.18(s, 3H), 2.24-2.36(m, 7H), 2.41-2.46(m, 2H), 4.16(t, 2H, J = 5.6 Hz), 5.14(q, 1H, 2H), 5.14(q, 2H), 5.1
	J = 6.6 Hz), 6.71(d, 1H, $J = 8.2$ Hz), 6.78(d, 1H, $J = 7.6$ Hz), 6.99(t, 1H, $J = 7.9$ Hz)
3A2-7(1)	$1.35(s, 12H), 1.54 \sim 1.79(m, 9H), 2.28 \sim 2.41(m, 9H), 3.99 \sim 4.03 (m, 2H), 5.07(q, 1H, J = 6.7 Hz), 6.80(dd, 1H, J = 8.6 Hz, J = 2.7 Hz), 6.95(d, 1H, J = 0.01)$
3A2-7(2)	1H, $J = 2.7$ Hz), 7.29(d, 1H, $J = 8.8$ Hz) 1.97~1.46(m, 14H), 1.61~1.66(m, 5H), 1.89~1.95(m, 2H), 2.26~2.35(m, 7H), 2.42~2.47(m, 2H), 4.16(t, 2H, $J = 5.6$ Hz), 5.07(g, 1H, $J = 6.8$
JAZ ((Z)	Hz), 6.79(dd, 1H, $J = 8.6$ Hz, $J = 2.9$ Hz), 6.94(d, 1H, $J = 2.8$ Hz), 7.27(d, 1H, $J = 8.7$ Hz)
3A2-8(1)	$1.35 \sim 1.54$ (m, 12H), $1.59 \sim 1.81$ (m, 9H), $2.29 \sim 2.37$ (m, 4H), $2.39 \sim 2.44$ (m, 2H), $4.03 \sim 4.07$ (m, 2H), 5.20 (q, 1H, $J = 6.8$ Hz), 7.11 (d, 1H, $J = 8.9$
	Hz), $7.31-7.35(m, 1H)$, 7.51 (d, $1H$, $J = 2.6$ Hz)
3A2-8(2)	1.24–1.46(m, 14H), 1.61–1.71(m, 5H), 1.89–1.96(m, 2H), 2.26–2.37(m, 4H), 2.43–2.48(m, 2H), 4.14–4.18(m, 2H), 5.20(q, 1H, <i>J</i> =6.5 Hz),
	7.10(d, 1H, J=8.9 Hz), 7.30-7.34 (m, 1H), 7.50(d, 1H, J=2.5 Hz)
3B-1(1)	$1.21(d, 3H, J = 6.3 Hz), 1.35 \sim 1.39(m, 12H), 1.59 \sim 1.79(m, 6H), 2.27 \sim 2.49(m, 6H), 4.81 \sim 4.91(m, 1H), 4.96(s, 2H), 6.98 \sim 7.03(m, 2H), 7.$
0.5 (/0)	7.30~7.35(m, 2H)
3B-1(2) 3B-2(1)	1.22~2.06(m, 21H, 1.23(d, 3H, <i>J</i> = 6.3 Hz), 2.28~2.49(m, 6H), 4.94~5.00(m, 3H, 5.00(s, 2H)), 6.96~7.03(m, 2H), 7.29~7.34(m, 2H) 1.20(d, 3H, <i>J</i> = 6.3 Hz), 1.25~1.50(m, 12H), 1.56~1.77(m, 6H), 2.26~2.55(m, 9H, 2.27(s, 3H)), 4.81~4.97(m, 3H), 6.91 (d, 1H, <i>J</i> = 8.7 Hz),
50 2(1)	7.13~7.20(m, 2H)
3B-2(2)	$1.23(d, 3H, J = 6.3 Hz), 1.24 \sim 1.44(m, 12H), 1.46 \sim 1.61(m, 4H), 1.83 \sim 1.91(m, 2H), 2.25(s, 3H), 2.28 \sim 2.46(m, 6H), 4.91 \sim 4.99(m, 3H), 6.91(d, 2H), 2.25(s, 3H), 2.28 \sim 2.46(m, 6H), 4.91 \sim 4.99(m, 3H), 6.91(d, 2H), 2.25(s, 3H), 2.28 \sim 2.46(m, 6H), 4.91 \sim 4.99(m, 3H), 6.91(d, 2H), 2.25(s, 3H), 2.28 \sim 2.46(m, 6H), 4.91 \sim 4.99(m, 3H), 6.91(d, 2H), 2.25(s, 3H), 2.28 \sim 2.46(m, 6H), 4.91 \sim 4.99(m, 3H), 6.91(d, 2H), 2.28 \sim 2.46(m, 6H), 4.91 \sim 4.99(m, 3H), 6.91(d, 2H), 2.28 \sim 2.46(m, 6H), 4.91 \sim 4.99(m, 3H), 6.91(d, 2H), 2.28(m, 2H), 2$
	$1H, J = 8.7 Hz$), $7.13 \sim 7.21 (m, 2H)$
3B-3(1)	1.19~1.78(m, 21H), 2.27~2.45(m, 9H), 4.81~5.00(m, 3H), 6.83(dd, 1H, J = 8.8 Hz, J = 3.1 Hz), 6.97(s, 1H), 7.29(dd, 1H, J = 8.8 Hz, J = 2.4
	Hz)
3B-3(2)	$1.23(d, 3H, J = 6.3 Hz), 1.25 \sim 1.50(m, 12H), 1.46 \sim 1.50(m, 2H), 1.59 \sim 1.69(m, 2H), 1.80 \sim 1.92(m, 2H), 2.25 \sim 2.46(m, 9H), 4.95 - 5.05(m, 3H), 3.25 \sim 2.46(m, 9H), 4.95 - 5.05(m, 3H), 3.25 \sim 2.46(m, 9H), 3.25 \sim 2.46(m, 9H), 4.95 - 5.05(m, 3H), 3.25 \sim 2.46(m, 9H), 3.25 \sim 2.46(m, 9H)$
00 4(4)	6.78~6.85(m, 1H), 6.94~6.97(m, 1H), 7.26~7.30(m, 1H)
3B-4(1)	1.21(d, 3H, <i>J</i> = 6.3 Hz), 1.35~1.39(m, 12H), 1.57~1.80(m, 6H), 2.27~2.55(m, 6H), 4.83~4.92(m, 1H), 5.09(s, 2H), 7.13~7.17(m, 1H), 7.31~7.35(m, 1H), 7.49~7.51(m, 1H)
3B-4(2)	1.24 (d, 3H, $J = 6.3$ Hz), $1.25 \sim 1.45$ (m, 12H), $1.47 \sim 1.61$ (m, 4H), $1.80 \sim 1.92$ (m, 2H), $2.28 \sim 2.46$ (m, 6H), $4.94 \sim 5.00$ (m, 1H), 5.10 (s, 2H), 7.14 (d,
02 (1)	H_{L} (d, str, g = 0.0 Hz), H_{L} = 0.0 (m, H), H_{L} = 0.0 (m, H), H_{L} = 0.0 (m, H), H_{L} = 0.0 (m, H), H_{L} = 0.0 (m, H), H_{L} = 0.0 (m, H), H_{L} = 0.0 (m, H), H_{L} = 0.0 (m, H), H
3B-5(1)	1.21(d) 3H, $J = 6.3$ Hz), 1.25~1.50(m, 12H), 1.59~1.79(m, 6H), 2.27~2.55(m, 6H), 4.84~4.90(m, 1H), 5.09(s, 2H), 7.10(d, 1H, $J = 8.9$ Hz),
	7.46(dd, 1H, $J = 8.8$ Hz, $J = 2.4$ Hz), 7.61(d, 1H, $J = 2.4$ Hz)
3B-5(2)	1.22~1.92(m, 21H, 1.23(d, 3H, J = 6.3 Hz), 2.28 ~2.46(m, 6H), 4.94~5.00(m, 1H), 5.11(s, 2H), 7.10(d, 1H, J = 8.9 Hz), 7.45(dd, 1H, J = 8.8
	Hz, $J = 2.4$ Hz), 7.61(d, 1H, $J = 2.4$ Hz)
3B-6(1)	1.17~1.20(m, 3H), 1.20~1.45(m, 12H), 1.54~1.75(m, 9H), 2.26~2.45(m, 6H), 4.79~4.86(m, 1H), 5.09(q, 1H, <i>J</i> =6.7 Hz), 6.95~7.01(m, 2H),
3B-6(2)	7.29~7.35(m, 2H) 1.21~1.44(m, 17H, 1.22(d, 3H, J = 6.3 Hz), 1.60~1.65(m, 5H), 1.80~1.86(m, 2H), 2.25~2.44(m, 6H), 4.92~4.97(m, 1H), 5.09(q, 1H, J = 6.7
30-0(2)	Hz), $6.95 \sim 7.00$ (m, 2H), $7.29 \sim 7.34$ (m, 2H)
	(12), 0.33 + 1.00(11), 211), 1.23 + 1.04(11), 211)

grew them at 25-32 °C for about 7 days. Thirty plants at the two-leaf stage were retained by thinning out the seedlings and the emulsions (1 mL of emulsion for each cup with plants) were applied by Potter spray tower. Then the plants were grown at 25-32 °C. Three replicates were performed for each concentration. The number of dead or withered plants was recorded after 7 days and the inhibition rate was calculated according to the formula

$$I = \frac{\bar{D}_1 - \bar{D}_0}{30 - \bar{D}_0} \times 100\% \tag{1}$$

in which *I* is inhibition rate, \overline{D}_1 is the average number of dead or withered plants in the presence of test compounds, and \overline{D}_0 is the average number of dead or withered plants in the blank test. EC₅₀ values of compounds **3** against *Amaranthus tricolor* L. were estimated using logistic analysis (*16*). The EC₅₀ values of three pairs of *Z* and *E* isomers of compounds **3** (**3A1–7**, **3A1–11**, **3A1–13**) with 95% confidence interval are shown in **Table 4** and The EC₅₀ values of all of compounds **3** (a mixture of *Z* and *E* isomers) with 95% confidence interval are listed in **Table 5**. The herbicidal activity of **3A1–12** against dicotyledon



Figure 4. Crystal structure of compound 3A1-7(1).

Table 4. Herbicidal Activity of Z and E Isomers of Some Compounds 3 to

 Amaranthus tricolor L.

compound no.	regression eq	EC ₅₀ (95%CI)/mgL ⁻¹
3A1-7(1)	Y = 2.43 + 2.11x	16.3 (12.6-21.3)
3A1-7(2)	Y = 2.38 + 2.19x	15.7 (12.0-20.5)
3A1-11(1)	Y = 1.63 + 2.68x	18.2 (14.3-23.0)
3A1-11(2)	Y = 1.37 + 2.88x	18.3 (14.9-22.5)
3A1-13(1)	Y = 2.95 + 1.76x	14.7 (10.9-19.9)
3A1-13(2)	Y = 2.38 + 2.27x	14.4 (11.6-17.9)

Amaranthus tricolor L. (three colored amaranth), Cucumis sativus L. (cucumber), Glycine max L. (soybean), and Phaseolus radiatus L. (mung bean); and monocotyledon Triticum aestivum L. (wheat), Zea mays L. (maize), Oryza sativa L. (rice), and Festuca arundinacea L. (tall fescue) was determined using the same method. The results are listed in **Table 6**.

3. RESULTS AND DISCUSSION

3.1. Synthesis of Compounds 3. As shown in **Scheme 1**, (15-methyl)-12- pentadecanolides (**4**), prepared from 2-nitro-cyclododecanone, were allowed to react with hydroxylamine hydrochloride to give (15-methyl)-12-hydroxyimino-1,15- pentadecanolodes (**5**), which were then acylated using aryloxyal-kanoic acids (**6**) to afford the title compounds (**3**). The experimental data of compounds **3** are given in **Table 1**. **Table 1** showed the yields of compounds **3** from **5** are good (76–94%). The structures of compounds **3** were confirmed by elemental analysis (**Table 2**) and ¹H NMR (**Table 3**).

3.2. Geometric Isomers of Compounds 3. The Z and E isomers of compounds **3** (Figure 3) were obtained by silica gel column chromatography and were distinguished based on the ¹H NMR features of the compounds.

Table 5. Herbicidal Activity of Compounds 3 to Amaranthus tricolor L.

compound no. ^a	regression eq	EC_{50} (95%CI)/mgL ⁻¹
3A1-1	Y = 2.98 + 1.08x	73.2 (35.0-153.1)
3A1-2	Y = 4.28 + 0.35x	117.4 (80.1-1705.6)
3A1-3	Y = 3.52 + 0.85x	55.4 (25.5-120.5)
3A1-4	Y = 3.11 + 1.12x	48.8 (28.5-83.6)
3-5	Y = 4.29 + 0.48x	30.6 (9.8-95.9)
3A1-6	Y = 3.96 + 0.76x	23.8 (11.7-48.7)
3A1-7	Y = 2.41 + 2.05x	18.2 (12.3-27.0)
3A1-8	Y = 1.76 + 1.70x	80.9 (46.1-141.9)
3A1-9	Y = 2.95 + 1.19x	52.4 (27.4-100.3)
3A1-10	Y = 2.61 + 1.37x	55.4 (36.3-84.4)
3A1-11	Y = 3.20 + 1.39x	19.6 (11.2-34.6)
3A1-12	Y = 4.56 + 0.50x	7.7 (3.0-19.7)
3A1-13	Y = 2.24 + 2.25x	16.9 (11.7-24.4)
3A2-1	Y = 2.85 + 1.60x	22.4 (16.2-31.0)
3A2-2	Y = 1.73 + 2.10x	35.9 (26.7-48.3)
3A2-3	Y = 2.85 + 1.71x	18.0 (13.4-24.3)
3A2-4	Y = 1.58 + 2.45x	25.1 (20.2-31.1)
3A2-5	Y = 2.72 + 1.82x	17.8 (13.2-23.8)
3A2-6	Y = 2.29 + 1.60x	49.6 (34.7-70.8)
3A2-7	Y = 3.44 + 1.60x	9.5 (6.0-15.3)
3A2-8	Y = 3.41 + 1.41x	13.5 (9.0-20.4)
3A3-1	Y = 3.07 + 1.25x	34.6 (22.0-54.4)
3A3-2	Y = 2.06 + 1.69x	55.4 (36.0-85.2)
3A3-3	Y = 1.31 + 2.21x	46.5 (34.1-63.4)
3A3-4	Y = 2.22 + 1.64x	50.1 (34.4-72.9)
3B-1	Y = 3.21 + 1.64x	12.4 (9.1-16.9)
3B-2	Y = 3.55 + 1.61x	8.0 (5.9-10.9)
3B-3	Y = 4.31 + 1.32x	3.4 (2.3-5.0)
3B-4	Y = 3.54 + 1.60x	8.2 (6.1-11.2)
3B-5	Y = 2.94 + 1.78x	14.4 (10.6-19.4)
3B-6	Y = 4.04 + 1.41x	4.8 (3.4-6.7)
2,4-D	Y = 2.07 + 1.42x	117.3 (83.4-587.6)
tribenuron-methyl	Y = 3.29 + 1.26x	22.4 (14.6-34.3)

^a Compounds **3A3**-1~**3A3**-4 were reported in ref *8*a. **3A3**-1: R = H, R (1) = Me, R² = Me, Ar = C₆H₅; **3A3**-2: R = H, R¹ = Me, R² = Me, Ar = 4-MeC₆H₄; **3A3**-3: R = H, R¹ = Me, R² = Me, Ar = 4-ClC₆H₄; **3A3**-4: R = H, R¹ = Me, R² = Me, Ar = 4-Cl-3-MeC₆H₄.

 Table 6. Herbicidal Activity of 3A1-12 (a Mixture of Z and E Isomers)

 Against Eight Plants

plant	regression eq	EC_{50} (95%Cl)/mgL ⁻¹
dicotyledon		
Amaranthus tricolor L.	Y = 3.10 + 1.72x	7.7 (3.0-19.7)
Cucumis sativus L.	Y = 4.88 + 0.73x	1.5 (0.4-5.4)
Glycine max L.	Y = 4.36 + 0.55x	14.4 (8.3-25.0)
Phaseolus radiatus L.	Y = 4.85 + 0.35x	2.8(0.5-15.1)
monocotyledon		
Triticum aestivum L.	Y = 4.32 + 0.43x	38.4 (14.1-104.6)
Zea mays L.	Y = 5.12 + 0.25x	0.3 (0.02-51.9)
Oryza sativa L.	Y = 4.80 + 0.51x	2.5 (1.25-5.0)
Festuca arundinacea L.	Y = 3.11 + 1.11x	50.2 (32.6-77.2)

In the case of Z isomers, the benzene ring on the side chain is closer to 15-C than that of E isomer, therefore the resonance lines of 15-CH₂ (**3A** series) or 15-CH (**3B** series) would be expected to shift upfield from the corresponding 15-CH₂ or 15-CH of E isomers due to the diamagnetic effect of the benzene ring (17). It can be seen from **Table 3** that the ¹H NMR signals of protons on the 15-C of (**1**)-isomers appeared upfield (δ 3.91-4.09 for **3A** series and δ 4.79-5.00 for **3B** series) relative to those of the (**2**)-isomers (δ 4.14-4.20 for **3A** series and δ 4.91-5.05 for 3B series). Therefore (**1**) is the Z isomer and (**2**) is the E isomer. The results also were confirmed by the X-ray diffraction analysis that **3A1-7(1**) is the Z isomer (**Figure 4**). Usually Z and E isomers of compounds **3** can not be separated completely; therefore, only total yields were given in this paper. **3.2. Herbicidal Activity.** It can be seen from **Table 4** that the herbicidal activity against *Amaranthus tricolor* L was almost no difference between the Z isomer and E isomer of compounds **3.** May be it is easy to interconvert between Z an E isomers of imine systems (18). The ¹H NMR spectra of a mixture of Z and E isomers have been observed in several hours for a solution of single isomer of compounds **3** in chloroform containing trace hydrochloride in our experiment. Therefore the herbicidal activity of all compounds **3** was determined in the form of the mixture of Z and E isomers.

As shown in Table 5, some of compounds 3 displayed excellent herbicidal activity against Amaranthus tricolor L: the herbicidal activity of compounds 3 except compounds 3A1-2 was much higher than that of commercial herbicide 2,4-D and the herbicidal activity of about half of compounds 3, the LC_{50} values of which are less than 20 mg/L, may be comparable to commercial herbicide tribenuron-methyl, which illustrated that herbicidal activity of compounds 3 is displayed by aryloxyalkanoic acid in coordination with macrolactone ring. Namely, herbicidal activity of phenoxyalkanoic acid herbicides such as 2,4-D, is significantly improved by combining with macrolactone ring. The structure-activity relationship is as follows: Compounds 3B exhibited higher herbicidal activity than compounds 3A, and the structural difference between series 3B and series **3A** is only the existence of a methyl group on the C-15 of macrolactone ring in 3B instead of H in that of 3A, which indicated that small structural modification of macrolactone ring will lead to obviously change the herbicidal activity. Above facts illustrated that the macrolactone ring plays an important role in the herbicidal activity of compounds 3. The structures of alkanoic acid moiety also have an important effect on the herbicidal activity of compounds 3. In general, compounds 3A have a gradual increase of herbicidal activity in the order of 3A3 (alkanoic acid moiety is isobutanoic acid), 3A1 (alkanoic acid moiety is acetic acid) and **3A2** (alkanoic acid moiety is isopropanoic acid), which indicated that the existence of suitable substituent (here is methyl group) on the α -carbon of alkanoic acid will benefit the improvement of herbicidal activity for compounds 3. However, more substituents (two methyl groups) on the α -carbon of alkanoic acid are unfavorable to the improvement of herbicidal activity. The herbicidal activity of the compounds 3 is also closely associated with Ar. The compounds 3 in which Ar is a phenyl bearing two chlorine atoms or one chlorine with one methyl group showed better activity than those in which Ar is a phenyl bearing only one chlorine, and the activity of latter is better than those in which Ar is a phenyl bearing 1-2 methyl groups or one another groups such as nitro group or methoxy group.

It can be seen from **Table 6** that compound **3A1–12** exhibited excellent herbicidal activity against *Amaranthus tricolor* L., *Cucumis sativus* L.), *Glycine max* L. *Phaseolus radiatus* L., *Zea mays* L. and *Oryza sativa* L. (The EC₅₀ values were 7.7, 1.5, 14.4, 2.8, 0.3, and 2.5 mgL⁻¹, respectively); and good herbicidal activity against *Triticum aestivum* L. and *Festuca arundinacea* L. (The EC₅₀ values were 38.4 and 50.2 mgL⁻¹, respectively.)

In conclusion, a series of novel 12-(aryloxyacyloxyimino)-1,15-pentadecanlactone derivatives were synthesized by introducing macrolide ring into aryloxyalkanoic acids. The bioassay showed that some of them exhibited excellent herbicidal activity against the model weed *Amaranthus tricolor* L. The further bioassay showed that compound 3A1-12 exhibited good to excellent herbicidal activity against both dicotyledon and monocotyledon. It could be Synthesis and Herbicidal Activity of Pentadecanlactone Derivatives

LITERATURE CITED

- (a) Egerton, J. R.; Ostlind, D. A.; Blair, L. C.; Eary, C. H.; Suhayda, D.; Cifelli, S.; Riek, R. F.; Campbell, W. C. Avermectins, new family of potent anthelmintic agents: efficacy of the B1a component. *Antimicrob. Agents Chemother.* **1979**, *15*, 372– 378. (b) Davies, H. G.; Green, R. H. Avermectins and milbemycins. *Nat Prod Rep.* **1986**, *3*, 87–121.
- (2) Gunasekera, S. P.; Gunasekera, M.; Mccarthy, P. Discodermide: A new bioactive macrocyclic lactam from the marine sponge *Discodermia* dissolute. *J. Org. Chem.* **1991**, *56*, 4830–4833.
- (3) Jakobi, M.; Winkelmann, G. Maltophilin: a new antifungal compound produced by *Stenotrophononas maltophilia*. <u>J. Antibiot</u>. 1996, 49, 1101–1104.
- (4) Hashidoko, Y.; Nakayama, T.; Homma, Y.; Tahara, S. Structure elucidation of Xanthobaccin A, a new antibiotic produced from *Stenotrophomonas* sp. strain SB-K88. <u>*Tetrahedron lett.*</u> 1999, 40, 2957–2960.
- (5) Kastanias, M. A.; Chrysayi-Tokousbalides, M. Herbicidal potential of pyrenophorol isolated from a *Drechslera avenae* patghotype. *Pest. Manag. Sci.* 2000, 56, 227–232.
- (6) Huang, J. X.; Jia, Y. M.; Liang, X. M.; Zhu, W. J.; Zhang, J. J.; Dong, Y. H.; Yuan, H. Z.; Qi, S. H.; Wu, J. P.; Chen, F. H.; Wang, D. Q. Synthesis and fungicidal activity of macrolactams and macrolactones with an oxime ether side chain. *J. Agric. Food Chem.* 2007, (26), 10857–10863.
- (7) Hou, X. T.; Chen, C.; Liang, X. M.; Wu, X. M.; Wu, J. P.; Jin, S. H.; Wang, D. Q. Synthesis and herbicidal activities of (E)-O-2oxocyclododecanone oximes. *Chin. J. Pestic. Sci.* **1999**, *1* (1), 40– 44.
- (8) (a) Meng, X. Q.; Liang, X. M.; Rui, C. H.; Fan, X. L.; Wang, D. Q. Synthesis and herbicidal activity of 12-(substituted phenoxy-iso-butyroxyimino)-1,15- pentadecanolides. *Chin. J. Pestic. Sci* 2003, 5 (2), 33–39. (b) Zhang, J. J.; Dong, Y. H.; Liang, X. M.; Wang, D. Q. Synthesis and characterization of 12-acyloxyimino-1,15-pentadecanolides. *Chem. J. Chin. Univ* 2003, 24 (9), 1604 1609.

- (9) Fletcher, W. W.; Kirkwood, R. C. *Herbicides and Plant Growth Regulators, Granada Publishing*; Granada: London, 1982; pp21–27.
- (10) Bukowska, B. Toxicity of 2,4-Dichlorophenoxyacetic acid—molecular mechanisms. *Polish J. Environ. Stud.* 2006, 15 (3), 365–374.
- (11) Bus, J. S.; Hammond, L. E. Regulatory progress, toxicology, and public concerns with 2,4-D: Where do we stand after two decades. *Crop protection* **2007**, *26*, 266–269.
- (12) Xie, Q. L.; Zheng, J. Y. Synthesis and structure of tricyclohexylstannane aromatoxyacetares. <u>Chin. J. Org. Chem</u> 1991, 11 (1), 82–87.
- (13) (a) Husslein, G., Hamprecht, G., Koening, K. H.; Boehm, W.; Gaeng, M. Chlorinated phenoxyalkanoic acids. U.S. Patent 4515985, 1985; pp 05–07. (b) Fukuda, K., Hatanaka, M., Makabe, T., Ishii, K. Preparation of (+)-2-[4-(6-chloro- 2-quinoxalinyloxy)phenoxy]-propionates, U.S. 6136977, 2000.
- (14) Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. <u>Acta Crystallogr. Sect A: Found. Crystallogr.</u> 1990, 46, 467.
- (15) Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structrues;, University of GÖttingen:: Germany, 1997.
- (16) Berkson, J. A statistically precise and relatively simple method of estimating the bioassay with quantal response, based on the logistic function. J. Am. Stat. Assoc. **1953**, 48, 565599\.
- (17) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. High-field FT NMR application of Mosher's method. The absolute configurations of marine terpenoids. *J. Am. Chem. Soc.* **1991**, *113*, 4092– 4096.
- (18) Kerek, F.; Ostrogovich, G. Mechanism of the uncatalysed synanti-Isomerization of Imine Systems. Part IV. A Theoretical Study of the Influence of Substituents. J. Chem. Soc. B 1971, 541–544.

Received for review August 28, 2008. Revised manuscript received October 19, 2008. Accepted October 25, 2008. We acknowledge financial support of this investigation by the National Basic Research Program of China (2003CB114407). CCDC 689231 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Telephone: (44) 01223 762910; e-mail: deposit@ccdc.cam.ac.uk.

JF802649W